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Signal integration is an important aspect of many physical applications. It is often necessary to limit
the effects of noise when data from several sensors are integrated to provide a consolidated estimate of
some physical quantity being measured. This paper proposes a method of applying the idea of multireso-
lution to the problem of efficient integration of abstract sensor estimates when the number of sensors is
very large and a large number of sensor faults are tame. The idea essentially consists of constructing a
simple function from the outputs of the sensors in a cluster and resolving this function at various succes-
sively finer scales of resolution to isolate the region over which the correct sensors lie. We develop an
optimal O(NlogN) algorithm, where N is the total number of sensors, that implements this idea
efficiently. This proposed application will result in speeding up computations involved in reducing the
measure of the integrated output estimate by giving rise to an alternative method of narrowing down the
region containing the correct value of the parameters being measured by the sensors.

PACS number(s): 02.90.+p

I. INTRODUCTION

Signal integration has been shown to have wide rang-
ing applications in areas such as radar tracking and tar-
get detection. This includes the problem of fault-tolerant
integration of information from multiple sensors, map-
ping, and modeling the environment space and task level
complexity issues of the computational model. Further,
these techniques have to be robust in the sense that even
if some of the sensors are faulty, the integrated output
should still be as reliable as possible.

We have proposed in this paper an alternative method
of sensor integration using techniques of multiresolution
decomposition. Multiresolution decomposition may be
described as signal analysis in frequency channels of con-
stant bandwidth on a logarithmic scale.

The cumulative signal from all the sensors is analyzed
at various resolutions, starting from a coarse resolution
and proceeding to successively finer scales. In a coarse-
to-fine strategy, a minimum of detail necessary for recog-
nition is processed. The approximation of a signal f at a
resolution r is defined as an estimate of f derived by uni-
formly sampling f, r times per unit length. Tanimoto
and Pavlidis [7] have developed efficient algorithms to
compute the approximation of a function at different
resolutions.

In this paper, we propose a method of applying the
idea of multiresolution to the problem of fault-tolerant
integration of abstract sensor estimates when the number
of sensors is very large and a large number of sensor
faults are tame.! The key idea is the construction of a

I1Sensor faults are described in detail in Sec. II.
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simple function from the outputs of all the sensors and
resolution of this function at various scales to isolate the
region over which the correct sensors lie. We give an op-
timal algorithm which implements this idea efficiently.

The remainder of the paper is organized as follows.
Section II describes the sensor integration in a distributed
environment. Section III describes the multiresolution
decomposition method. In Sec. III A we develop a tech-
nique of fault-tolerant sensor integration by applying the
idea of multiresolution analysis to the overlap function
O(x). Section IIIB describes the selection of robust
peaks. In Sec. III C, we give an algorithm which imple-
ments our analytical method. The experimental results
are given in Sec. IV. Then, we conclude this paper in
Sec. V.

II. THE SENSOR INTEGRATION PROBLEM

A distributed sensor network consists of spatially dis-
tributed sensors that detect and quantify a certain
phenomenon via its changing parameters. These readings
are sent at regular intervals of time to processing units
that integrate the readings from clusters of sensors and
give outputs whose nature is much the same as the inputs
of the individual sensors. Output from processors
representing clusters of sensors are later integrated to get
a complete picture of the spatially distributed
phenomenon. However, before integration is performed
at the processor level, it is necessary to have reliable esti-
mates at each processor. Each sensor in a cluster mea-
sures the same parameter. It is possible that some of
these sensors are faulty. Hence it is desirable to make use
of this redundancy of the readings in the cluster to obtain
a correct estimate of the parameters being observed. In
short, a fault-tolerant technique of sensor integration is
sought [1].

3452 ©1994 The American Physical Society



49 FAULT-TOLERANT SENSOR INTEGRATION USING . ..

Marzullo [2] has addressed the problem of fault-
tolerant integration of abstract interval estimates and has
generalized his estimates to multidimensional sensors [3].
An illustration of this is given in Fig. 1. We [4] have pro-
posed a method of obtaining sensor estimates with high
reliability by considering the problem when the number
of sensors was large and most of the faulty sensors were
tamely faulty. We have also generalized our technique to
multidimensional sensors in [5].

The technique we developed in [4] and [5] was a polling
technique which computed the intersections of sensor
outputs and the associated reliability measures. Since the
number of these intersections is very large, the method is
not useful for real-time applications.

In order to obtain a method of fault-tolerant sensor in-
tegration that is more feasible for real-time applications,
we analyze a function called the overlap function intro-
duced in [4]. We describe our approach to one-
dimensional sensors although it generalizes easily to
higher dimensions.

A. Preliminaries

We review the relevant definitions from [4] for con-
venience.

Definition 1: An abstract sensor is a sensor that reads a
physical parameter and gives out an abstract interval-
estimate I; which is a bounded and connected subset of
the real line R.

Definition 2: A correct sensor is an abstract sensor
where the interval estimate contains the actual value of
the parameter being measured. If the interval estimate
does not contain the actual value of the parameter being
measured, it is called a faulty sensor.

Definition 3: Let sensors Sy, ...,Sy feed into a pro-
cessor P. Let the abstract interval estimate of S; be I;
(1=<j=<N), the closed interval [a;,b;] with end points a
and b. Define the characteristic function X; of the jth sen-
sor Sj, 1<j <N as follows:

1, Vx€I, VI<j<N

Figure 2 illustrates the characteristic function of the in-
terval [a;,b; ].

Definition 4: Let O(x)=3_,x;(x) be the “overlap
function” of the N abstract sensors. For each x ER, O(x)
gives the number of sensor intervals in which x lies; that
is, the number of intervals overlapping at the x.

Definition 5: A sensor is tamely faulty if it is a faulty
sensor and if its output overlaps with that of a correct
sensor.

Final Output Estimate

FIG. 1. Integration of interval estimates.
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FIG. 2. Characteristic function of the interval [a;,b; ].

B. Comments on tame faults

If we tolerate at most f faults among N sensors, then
by taking all (N — f) intersections of the N sensor inter-
val estimates, we are assured that the correct value of the
parameter lies in one of these intersections. Marzullo [2]
computes the integrated output as the smallest connected
interval containing all the (N — f) intersections. Howev-
er, when the number of sensors is large and the number
of faults cannot be strictly bounded, the (N — f) intersec-
tions tend to be scattered widely over the real line, giving
poor output estimates. In order to improve the output
estimate in these cases, we must be able to further evalu-
ate the (N — f) intersections to choose the “best possible”
intersection which contains the correct value with high
reliability.

In the method proposed here we assume, as before,
that the number of sensors is very large, that most faults
are tame, and that there is no bound on the number of
faults.

As the sensors are sampled synchronously at various
time intervals, we order the sensors a priori by labeling
them, dynamically maintain their overlap function O(x),
and analyze it at various scales to obtain successively
smaller regions which contain the correct value of the pa-
rameter observed.

The function @(x) is the sum of the characteristic
functions of the abstract interval estimates. The value of
O(x) at any point x is the number of intervals overlap-
ping at the point x. The structure of the function is fairly
simple.

Since there are finitely many sensors and each sensor is
represented by an abstract interval estimate of bounded
length, O(x) has compact support. By definition, @(x) is
a non-negative function. It has several ‘“crests” in its
profile representing regions of maximal overlap of inter-
vals (see Fig. 3).

&

—

FIG. 3. The overlap function O(x) for a set of 7 sensors.
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III. MULTIRESOLUTION DECOMPOSITION

Given a sequence of increasing resolutions {r;};c 7, the
details of a function f(x) at the resolution r; are defined
as the difference of information between the approxima-
tions of f(x) at the resolution r;+1 and the approxima-
tion at the resolution r;.

A multiresolution representation also provides a simple
hierarchical framework for interpreting the signal con-
tent. For instance, it is hard to recognize that a small
rectangle inside an image is the window of a house, if we
did not previously recognize the house “context.” It is
therefore natural to first analyze image details at a coarse
resolution and then increase the resolution.

The approximation of a signal f(x) at a resolution r is
defined as an estimate of f(x) derived from r measure-
ments per unit length. These measurements are comput-
ed by uniformly sampling at a rate r the function f(x)
smoothed by a low-pass filter whose bandwidth is propor-
tional to r. In order to be consistent when the resolution
varies, these low-pass filters are derived from a unique
scaling function which is dilated by the resolution factor
r.

Starting at the coarsest resolution, we select those
crests with the highest peaks (wavelet components with
the largest amplitude) and choose the crest with the wid-
est spread. At the next higher resolution, this crest is
again inspected for crests within it with highest ampli-
tudes and among these crests, the one with the widest
spread is retained for similar analysis at the next resolu-
tion. This procedure results in isolating those regions of
the real line over which @(x) has a maximum value, cor-
responding to high overlap degree. Figure 7 illustrates
this procedure. O(x) in Fig. 6 is processed using mul-
tiresolution decomposition. The advantage of this pro-
cedure is significant from the point of view of computa-
tional speed, since the coarse-to-fine processing leads to
elimination of large regions of the support of O(x) at
each resolution.

We will rigorously formulate this heuristic in the next
section in order to obtain a real-time algorithm that
dynamically maintains O(x) and obtains the narrowed
output estimate. The maintenance of O(x) requires
O(N logN) time where N is the number of sensors. This
follows directly from the fact that sensor intervals need
to be sorted first according to their beginning and end
points—a process that has a computational complexity
of QN logN). We will verify that this method leads to
results comparable to our earlier results and those of
Marzullo by simulating sensor failures.

In our model of abstract sensors we assume that (i) a
large number of sensor faults are tame, and that (ii) the
length of each interval estimate is bounded below by !/
and above by L where [ <L and /, L are positive real
numbers. Figure 4 describes the regions about the
correct parameter value ¢ where the faulty sensors clus-
ter. A very large interval estimate is too inaccurate to be
of any value and hence may be discarded. On the other
hand, a very small interval estimate would not be amen-
able for fault-tolerance analysis. A minimum tolerance of
+1/2 is built into the abstract sensors, and so we may as-
sume that the width of each interval is at least /. These
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FIG. 4. The regions about the correct parameter value ¢
where the faulty sensors cluster has L =2/.

two assumptions imply that the tame faults cluster in a
bounded neighborhood around the correct value of the
measured parameter. When the number of faulty sensors
are significant, since most faults are tame, this results in
overlaps of the faulty sensors amongst themselves and
boosts the value of O(x) in the neighborhood of the
correct value of the parameter, thus reinforcing the
(N — f) intersection containing the correct value.

Let T be the number of tamely faulty sensors. These
may range in width from / to L. A tamely faulty sensor
must intersect with a correct sensor. Therefore its end
point nearest to the correct value ¢ must lie within a dis-
tance of at most L from c¢. Thus at most (1+|L/I|)
tamely faulty sensors can be accommodated on either
side of ¢ with no two of them overlapping. That is, at
least [T/2(1+|L/I|)] tamely faulty sensors overlap
over a region of width at least / within a distance of at
most 2L from c.

When the number of intersections of tamely faulty sen-
sors is [T /2(1+|L /1])], the width of this intersection is
actually at least 2(/ +L). When the number of intersec-
tions is T then this results in a peak with spread of at
least /. This clustering reinforces the width and height of
the “correct” (N — f) intersection by adding in its neigh-
borhood a peak of area 71 at least. In general, this results
in a taller and wider peak in the neighborhood of ¢. The
wildly faulty sensors, on the other hand, are random in
their location on the real line and being uncorrelated,
tend not to cluster in any small neighborhood. Thus the
(N —f) intersections resulting from them have shorter
and narrower peaks representing them in O(x).

A. Multiresolution of the overlap function

If S; (1<i <N) are N abstract sensors with their inter-
val estimates [a;,b;] (1<i<N) having characteristic
function y; (1 <i = N) such that

1 if x E[a;,b;]

XiX)=10 if x&[a;b,], @
then the overlap function O(x) of these N sensors is given
by O(x)=3 2, x;(x).

For each j, O(x) can be sampled at regular intervals
1/2/ to obtain the jth resolution of @(x) at scale 1/2/ as a
linear combination of a set of functions obtained by scal-
ing and translating a single function.

Let

1 if0=x=1

~ |0 otherwise 3)

o(x)

(see Fig. 5.) Let a€R and jEZ. Consider the functions
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, . , 1 ifa+n/2<x<a+(n+1)/2/
{o(2/(x —a)—n}y-_, where 0(2/(x —a)—n)= 0 otherwise . 4)
Without loss of generality, we may assume 0<a < 1/2/. Note that
[a+n/2,a+(n+1)/2)N[a+(n +1)/2,a+(n +2)/2)=0 (5
r
and where [x| denotes the smallest integer greater than or
w . equal to x. Thus @/(x) is obtained from O(x) by sam-
U [a+N/2,a+(N+1)/2/]=R . (6)  pling O(x) at the points {a+n27/}, (see Fig. 6). @), isa
N=—ow

The jth resolution of O(x) with respect to the functions
{0(2/(x —a)—n)}y -_, is denoted by O)(x), and is
given by

Oi(x)= 3 Ola+27)o(2(x —a)—n) . @)
n=-—o
Since @O(x) has compact support, the above summation is
actually over finitely many n. If the interval estimates of
the sensors S; are [a;,b;] (1<i=<N) and
a =min, <;<y{a;} and b =max, <;<y{b;}, then
) [2/(b —a)]
Oix= 3

n=[24a—a))

O(a+n2 Ho(2i(x —a)—n), (8)

=

function whose features are of size 1/2/ or greater. To
study the effect of sampling in the above manner it is
sufficient to study the sampling of the characteristic func-
tion of an arbitrary interval [a,b], since O(x) is a linear
combination of characteristic functions.

Consider the test function

1 if x €[a,b]

- 9)
8X)= 10 if xg[a,b]. (

Case (i). b—a=1/2/,i.e.,g(x)is a feature bigger than
the scale width, a €[a+n /2/,a+(n +1)/2) for some n,
bela+tm/2,a+(m +1)/2/),and n <m. Thus

ghx)= 3 gla+r27)e(2ix —a)—r)=gla+n2)o(2(x —a)—n)+ - - - +gla+m2™ o (2/(x —a)—m)

r=—o

or

ifa=a+n/2

glat(n +12 o (2i(x —a)—n —1)+ -+ +gla+m2 )o(2(x —a)—m) fa>a+n/2.

Therefore we have

1 ifat+n/2’<x<a+(m+1)/2/
glix)= ifa=a+n/2/

0 otherwise , (10)

and

1 fat+(n+1)/2<x<a+(m+1)/2/
ghix)= ifa>a+n/2 1"

0 otherwise . D

1 o(x)

0 1

FIG. 5. Characteristics of scaling and translating a single
function.

r

Thus there are two things which may happen indepen-
dently to the support of g (x): (i) it may shrink on the left
by at most 1/2/, and (ii) it may extend on the right by at
most 1/2/ (see Fig. 7).

We will see later that we have to correct for a positive
shrinkage of the support of a feature, so as not to lose any
information (correct value of the parameter measured).
This is done by resolving over a region bigger than the
one at hand by 1/2’ on the left. The extension (“smear-
ing”) of support will decrease with further resolution, and
does not pose a problem.

Case (ii). b—a<1/2. [g(x)isa feature smaller than
the scale width]. If a,bE€[a+n/2/,a+(n+1)/2’) for
some n, then g{;(x)=0\1x, i.e., the feature will not appear
at scale 1/2/. If a <1/2j <b for some n then

2° t t t —

2! ettt ——t—t—t—t—t
2° et
27

--------------------------- HHH

FIG. 6. Sampling at various scales.
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FIG. 7. Computational characterization of support of g (x).

o ifat+n/2<x<a+(n+1)/2/
8a(x)= 0 otherwise , (12)

that is, g (x) will appear as a feature of size 1/2/ shifted
to the right by at most b —a. This will diminish in size
with further resolution, and g(x) will be recovered by
correction to the left and resolution.

We note that changing a will not produce any advan-
tage insofar as sampling O(x) is concerned since location
of the sampling {a+n /2/} with respect to O(x) is arbi-
trary. We may thus conveniently let =0 and hence-
forth sample O(x) at points {n /2/} to obtain the jth reso-
lution. Thus

A [2/b] . ,
O(x)= 3 O[n27lo(x2—n)]jEZ .

n={2/a]

(13)

While considering resolution of @(x), we have to choose
the scale appropriately. Too large a scale will provide no
useful information about the structure of (@, while too
small a scale would not isolate the features important to
us, by bringing in unnecessary detail. Further, since each
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sensor has width at least /, it is desirable to start off with
a scale smaller than (or the same order as) /, i.e., choose
j =[log,(1/1)]. Thus each sensor will figure as a feature
at least as big as 1/2/.

The fluctuations in O(x) occur at the points a;,b;
(1<i <N) which are the end points of the interval esti-
mates. If a is the least of the a; and b is the largest of the
b;, then the average number of fluctuations per unit
length is given by 2N /(b —a). So in order to capture all
the fluctuations we would have to resolve at least to a lev-
el j >log,[2N /(b —a)].

B. Selection of robust peaks

At the jth level of resolution (@, can be looked upon as
a series of juxtaposed peaks. In other words, consider the
sequence {@(n/2/)}. This sequence is a concatenation of
several bitonic sequences, each of which increases first
and then decreases (for details about bitonic sequences,
see [6]). Each bitonic sequence which increases first and
then decreases corresponds to a peak in @), We wish to
isolate those peaks which are the tallest and have the
widest spread, for it is in the region over which these
peaks lie that the correct value of the parameter being
measured is most likely to be found. Since the charac-
teristic function of each sensor adds an area numerically
equal to the sensor’s width to the area under @(x), a good
measure of the robustness of a peak is the area under it.

At the jth resolution consider the sequence
{O(n/2))},. This is a finite sequence since the support of
O is finite. Let there be p peaks (or p bitonic sequences)
in O’. Thus the sequence {O(n /2/)} can be rewritten as

|
ng ny+1 n n,+1 n, +1 n
{(o—f, — 0| [o|—|,....0| 2=—| 0|2 ||, (14)
2/ 2/ 2/ 2/ 2/ 2/
r
where  the  subsequence  {O[(n; _+1/)2/],...,  to fine grain scheme for isolating robust peaks.

O(n; /2)} is the kth bitonic sequence from the left.

Therefore the area under this peak is given by
T A ‘

1723,  O(n/2). Since the factor 1/2/ is common

to the areas of all peaks at the jth resolution, we may
make the area “scale free” by dropping this factor and
writing the area of the kth peak at level j as

10"
Alk)y= 3 On/2). (15)

n=ng g

We then select the peak with the largest area and ignore
the other peaks. The function @ is further resolved over
the regions over which these largest peaks occur, and the
process is repeated until a satisfactory region of the real
line is isolated as the most likely candidate for containing
the correct value of the parameter being measured by the
sensors. However, before resolving a certain selected
peak further, we correct the region over which the reso-
lution is to be carried out by adding a segment of length
1/2/. Figures 8—12 show the property of the coarse grain

If at the jth resolution the kth peak is selected as the
peak with the largest area under it, then the region over
which the resolution of @O(x) is performed again is
[(ny _,+1)/2),n; /2] with a correction of length 1/2/ at
the left. ' _

Therefore, O(x) is resolved over [n,_,/2),n;,/2'].
This process is continued until the interval to be resolved
is smaller than the maximum acceptable width for output
estimate, or when further resolution does not reduce in-
terval width. The final corrected region with the largest
value of @ over it is accepted as the final output estimate.

1

o
9
8
7
6
5
4
3
2
1
o

FIG. 8. O(x), shaded region indicates portion to be resolved.



£
-}

-

O=NWAuo WNNOO

FIG. 9. O *x), shaded region and region of width 4 at left
to be resolved.

C. Multiresolution algorithm

The inputs to the algorithm are the end points a;, b; of
the interval estimate [a;,b;] of the sensors S;, 1<i <N,
and the lower and upper bounds of resolution
jo=log,(1/D)] and j,> [log,{2N /supp[O(x)]}]. The
algorithm is shown in Fig. 13.

Procedure RESOLVE, which resolves @(x) to obtain an
approximation of @ at the jth resolution over a given in-
terval, is shown in Fig. 14. It yields the indices of two
points at the jth resolution, over which the largest or
most prominent peak occurs, at the jth resolution. Fig-
ures 8—12 indicate the various stages during the execu-
tion of this algorithm graphically.

Procedure RESOLVE involves only scanning and hence
is linear in the number of sensors N. Since the average
density of fluctuation in @ is 2N /supp[O(x)], the level of
resolution j required to capture almost all the measures
of @ is given by j > log,{2N /supp[O (x)1}.

If we assume that the parameter being measured by the
sensors is known to lie between certain bounds, then
Jj >log,N +C where C is some constant. Thus procedure
RESOLVE will be called, on an average, O(logN) times.
Hence the average computational complexity of the algo-
rithm is O (N logN).

IV. EXPERIMENTAL VALIDATION

We have implemented the algorithm described in Sec.
IIIC of this paper and have developed a parameter-
driven simulator to evaluate the performance of the algo-
rithm. Briefly, the simulator parses the inpyt parameters
which include the number of sensors, the numbers of
tamely faulty and wildly faulty sensors, the upper and
lower limits for the sensor interval widths, and the
correct value. It then constructs randomly generated in-
tervals for the sensors according to the scheme described
in the following section. The overlap function is comput-
ed from a sorted list of the extreme points of all the sen-
SOrS.

The overlap function is then sampled at increasing lev-

O-NWBUO NRVO

FIG. 10. @ !(x), shaded region and region of width 4 at left
to be resolved.
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FIG. 11. @0%x), shaded region and region of width 4 at left to
be resolved.

els of resolution with the sampling frequency gradually
increasing. The algorithm terminates when only one
peak remains or when an arbitrarily fixed resolution is
reached.

The overall complexity of the simulator is dominated
by the sorting operation that needs to be performed over
the endpoints of the sensor intervals. Thus, the computa-
tional complexity of the simulator is O(N log(/N)) where
N is the total number of interval end points. This com-
plexity is optimal in the sense that sorting O (N) values
cannot be completed in less than O(N log(N)) time.

A. Construction of sensor intervals

The correct valued sensors (these intervals contain the
correct physical value being estimated) are constructed as

s;=L —on, e¢;=s;tw (16)

where s; is the start point of the interval, and e; is the end
point of the interval. o is the width of the sensor interval
estimate and is constrained to lie between w.;; and w,,.
L in the equation above is the correct value of the physi-
cal quantity estimated. 7 is a random number uniformly
distributed over (0.0,1.0]. For different sensors, @ is a
random number uniformly distributed over [w i, ®max -
The intervals for tamely faulty sensors are constructed as

;=L +tyzm, e=s;tw 1n

where t g, a parameter of tame faults, denotes the critical
distance from the correct value within which one of the
end points of each tamely faulty sensor interval must lie.?
Intervals for wildly faulty sensors are constructed as

s; =L+t g+n(L ..~ tg—0), =s;tw (18)

-

O-NWAUWO NXWVO

FIG. 12. O'(x), shaded region and region of width % at left
to be resolved over. At this point, we may terminate resolution
and choose the interval over which this peak attains a maximum
as the final output.

2Both of the end points of wildly faulty sensor intervals must
lie at a distance of at least ¢, from L.
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begin

L. Form the array of ordered pairs: [(a1,1), (b1, 1), (az,1),(52,-1),. .., (an, 1), (bn, —1)]

2. Sort this array in increasing order with respect to the first components of the ordered pairs
to obtain the array [(ai,01),(az,02),...,(azn, o2n)], where each a; is some a; or bj,a;, <
a;+11 <1< 2N, and

o = 1 ifa.-isanaj
710 ifa;isab;

3. Construct the array [(—00,0),(011,01),..,,(a;,Efi:l aj),.‘.,(a.zN, 2}’;’1 7;),(00,0)] repre-
senting the overlap function O(z). Note that o; = +1,35=10; = 0, and O(z) =
=10V 2z a <z < ajy1, 0 <i< 2N where @ = —oo and asN41 = ). Set

Nj = L2j°a1J and n;o = f2j°azN]

4. while jo < i< j; do RESOLVE[i;n;_1,n._,}; i« i+1;enddo
Sample O(z) between nj, /27t and n;l/2j‘ to obtain O (z), the approximation of O(z) at
the j-th resolution. Choose that subinterval of [n;, /2j‘,n;~x/2j1] over which 0% (z) attains a
maximum (or takes values greater than a specified value) and accept this subinterval as the
integrated output estimate of the N sensor estimates

end.

FIG. 13. The multiresolution algorithm.

where L_, is the maximum value any sensor can estimate. Faulty sensor intervals (both wild and tame) are located
randomly on both sides of the correct value L.

B. Computation and sampling of the overlap function

The overlap function is described in detail in Sec. IIl A. The array

i 2N
(—,0),(a,oq), ..., |a; Ojlseees Ay, S, o; |,(,0)
j=1 j=1

represents the overlap function @(x). In the above equation, a; is an extreme point of some interval (either s ; or e; for
some j) such that a; <a;,,, 1 =i <2N, and o, takes the value one if ¢; is a start point of some interval and takes the
value negative one if ¢; is an end point of some interval.

The overlap function is sampled at increasing sampling frequencies as described in Sec. III B. The simulation begins

with the interval whose end points are n jo=2]°oz1 and n -;0 =2’°a2N. These end points are replaced by the end points of

the peak with the largest area under it, found at the current sampling rate for resolution at the next higher level of reso-
lution. The simulation then continues until no further refinement is possible or until a user-specified resolution is
reached.

procedure RESOLVE[j;nj_,, n;_l]
begin

1. Resolve O(z) at scale 277 by sampling it over the interval [(n;_; — 1)/297Y,n;_,/2977] at
the points (2nj_; — 2)/27,(2n;-, — 1)/27,.. .,2n'j_l/2j to obtain O7(z), the approximation
of O(z) at the j-th resolution, represented by the array

kn
[(~0,0),...,(r/2, 3 03), .., (00,0)], (2mj_1 — 2 < m < 2n)_,)
=1

and 0%(z) = E;‘;l o; where n/27 <z < (n+1)/27 and (n/27 — a},) < 1/27

’
2. Choose n; and n'j, where nj < n; and 2n;_; -2 < n; < 2n;-_1 such that {O(n/2-"}:‘i_-n,-

7
. . . . N 2 . .
is a contiguous bitonic subsequence of {O(n/2-7)}":’,n‘j_l_2, which first increases and then
decreases, and which has the largest sum i.e., the subsequence with the maximum sum among

all such bitonic subsequences

end.

FIG. 14. The RESOLVE procedure used by the multiresolution algorithm.
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FIG. 15. 10 sensors, 5 wild faults, 3 tame faults.

Figures 15-19 show the results of the application of
our algorithm to several instances of the sensor interval
integration problem. The overlap function is shown as
the whitest lines. The vertical line in the middle of each
figure is the correct physical value being estimated by the
sensors. The sampled overlap function is shown as dark
grey lines. The peak of the sampled overlap function
with the largest area under it, is shown delimited by the
outer vertical lines. These lines move closer and closer at

(a)

FIG. 16. (a) 100 sensors, 50 wild faults, 30 tame faults. (b)
100 sensors, 50 wild faults, 30 tame faults.

FIG. 17. 100 sensors, 10 wild faults, 10 tame faults.

finer scales of resolution as seen in the figures. The actual
sensor intervals are also shown in some figures overlaid
with the overlap function; these appear in Fig. 16.

C. Simulation results

Tables I-1V show the regions of interest in the overlap
function @O(x) as the sampling frequency is varied from
coarse to fine. Where a rise or fall of the sampled func-
tion is so sharp that it was completely missed at the
current resolution level, the region of interest at the pre-
vious level of resolution is itself used at the next level.
For example, in Table I, the three rows marked medium
under sampling frequency exhibit this behavior.

Tables II and III both show the intermediate stages of
resolution for 100 sensors but with different proportions
of faulty and correct sensors. It is clear from these tables
that as the proportion of correct sensors increases, the
central peak (containing the correct physical value—see
Figs. 15 and 16) sustains at different levels of resolution.

Figure 15 graphically shows the information summa-
rized in Table II. As seen from the figure and the table,
there are only two broad scales in the overlap function—
a coarse scale (first two rows of table) and a fine scale.
The correct sensor intervals all contain the correct
value—the vertical center line. The tamely faulty sensor
intervals are clustered at the top of the two figures locat-
ed not too far from the correct value; the wildly faulty
sensor intervals are located on either side of the correct
value a significant distance away from it.

TABLE 1. 200 sensors; 100 wildly faulty, 50 tamely faulty.

Sampling  Resolution Sensor interval

frequency level Start point End point Width
coarse 3 —0.449277 0.673841 1.123118
medium 4 —0.191211 0.128103 0.319314
medium 5 —0.191211 0.128103 0.319714
medium 6 —0.191211 0.128103 0.319314
fine 7 —0.022714 0.003010 0.025724
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TABLE II. 100 sensors; 50 wildly faulty, 30 tamely faulty.
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TABLE III. 100 sensors; 10 wildly faulty, 10 tamely faulty.

Sampling  Resolution Sensor interval Sampling  Resolution Sensor interval

frequency level Start point End point Width frequency level Start point End point Width
coarse 3 —0.675956  0.663665 1.339621 coarse 3 —0.627078 0.379362  1.006 440
medium 4 —0.675956  0.663665 1.339621 medium 4 —0.627078 0.379362  1.006 440
medium 5 —0.115485 0.074100 0.189585 medium 5 —0.627078 0.379362  1.006 440
fine 6 —0.115485 0.074100 0.189 585 fine 6 —0.627078 0.379362  1.006440

(a)

(b)

(c)

FIG. 18. (a) 1000 sensors, 800 wild faults, 100 tame faults. (b)
1000 sensors, 800 wild faults, 100 tame faults. (c) 1000 sensors,

800 wild faults, 100 tame faults.

(a)

(b)

(c)

FIG. 19. (a) 200 sensors, 100 wild faults, 50 tame faults. (b)
200 sensors, 100 wild faults, 50 tame faults. (c) 200 sensors, 100

wild faults, 50 tame faults.
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TABLE IV. 1000 sensors; 800 wildly faulty, 100 tamely faulty.

Sampling  Resolution Sensor interval

frequency level Start point End point Width

coarse 3 0.252377 1.006563 0.754 186
coarse 4 0.252377 1.006563 0.754 186
medium 5 —0.047 790 0.203101 0.250891
medium 6 —0.047 790 0.203101 0.250891
medium 7 —0.016 398 0.021779 0.038177
fine 8 —0.012628 —0.006013 0.006 615
fine 9 —0.012628 —0.006013 0.006 615

As an illustration of the extreme case behavior of our
algorithm, we include two figures (16 and 17). Figure 16
shows the overlap function corresponding to 100 sensors;
10 wildly faulty and 10 tamely faulty (see Table III for
data). Notice that the most significant peak is sustained
at every intermediate level of resolution—a phenomenon
that faithfully repeats whenever the fraction of correct
valued sensors among all the sensors is relatively high.

What happens when most of the sensors are faulty is il-
lustrated in Fig. 17. Table IV contains the results of the
simulation with 1000 sensors. Notice that the final inter-
val computed by the algorithm does not include the
correct value due to the very large fraction of wildly faul-
ty sensors. It is relevant to mention one caveat here. The
actual form of the final solution is also dependent upon
the seed of the random number generator used to start
the Monte Carlo simulation. Thus, it is not unusual for
the final solution of one particular simulation experiment,
with almost all of the sensors being faulty, to contain the
correct value.

Figure 18 shows the sampled overlap function, at vari-
ous stages of resolution, corresponding to the data in
Table I. Figure 18(b) shows that the region of the overlap
function sampled does not change throughout the medi-
um frequency range as also evidenced by the three rows
in Table I marked medium under the sampling frequency
column.

V. CONCLUDING REMARKS

We have applied the concept of multiresolution to
one-dimensional sensor estimates to obtain a fault-
tolerant integrated estimate of the parameter being mea-
sured by the sensors. This is done by computing the
overlap function of the sensors, and resolving this func-
tion at increasingly finer dyadic scales to obtain a se-
quence of functions, each of which consists of a series of
peaks. In each of these functions, the highest peak with
the largest spread is chosen and further resolved at a finer
scale to obtain the next function. This process is repeat-
ed finitely many times up to a certain scale and the sensor
estimate is taken to be the region over which the max-
imum value of the largest peak is attained.

This method helps isolate the neighborhood of the
correct value of the parameter being measured by taking
advantage of the fact that the maximum intersection of
intervals occurs about the correct value, and this corre-
sponds to the highest peaks, and further, the tamely faul-
ty sensors cluster around the correct value, contributing
to the height and spread of the peak under which the
correct value lies. At each resolution, only the relevant
details of O(x) are considered, increasing the efficiency of
the computation.

The underlying idea in our method, the recognition
and isolation of the most prominent and robust peaks in a
region and the consequent elimination of narrower and
less prominent peaks as “errors,” can indeed be used else-
where to isolate the important characteristics of a signal
and remove the “noise” in a computationally efficient
manner. This method can be generalized, with some
modifications, to multidimensional sensors and signals.
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Final Output Estimate

FIG. 1. Integration of interval estimates.
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FIG. 10. @ '(x), shaded region and region of width 4 at left
to be resolved.
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FIG. 11. @®"x), shaded region and region of width 4 at left to
be resolved.
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FIG. 12. O'(x), shaded region and region of width 1 at left
to be resolved over. At this point, we may terminate resolution
and choose the interval over which this peak attains a maximum
as the final output.



FIG. 15. 10 sensors, 5 wild faults, 3 tame faults.



(b)

FIG. 16. (a) 100 sensors, 50 wild faults, 30 tame faults. (b)
100 sensors, 50 wild faults, 30 tame faults.



FIG. 17. 100 sensors, 10 wild faults, 10 tame faults.
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FIG. 18. (a) 1000 sensors, 800 wild faults, 100 tame faults. (b)
1000 sensors, 800 wild faults, 100 tame faults. (c) 1000 sensors,
800 wild faults, 100 tame faults.
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(b)

FIG. 19. (a) 200 sensors, 100 wild faults, 50 tame faults. (b)
200 sensors, 100 wild faults, 50 tame faults. (c) 200 sensors, 100
wild faults, 50 tame faults.
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FIG. 8. O(x), shaded region indicates portion to be resolved.
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FIG. 9. @ %(x), shaded region and region of width 4 at left
to be resolved.



